Allard, S.M., M.T. Costa, A.N. Bulseco, V. Helfer, L.G.E. Wilkins, C. Hassenrück, K. Zengler, M. Zimmer, N. Erazo, J.L. Mazza Rodrigues, N. Duke, V.M.M. Melo, I. Vanwonterghem, H. Junca, H.M. Makonde, D.J. Jiménez, T.C.L. Tavares, M. Fusi, D. Daffonchio, C.M. Duarte, R.S. Peixoto, A.S. Rosado, J.A. Gilbert, J. Bowman. 2020. Introducing the mangrove microbiome initiative: Identifying microbial research priorities and approaches to better understand, protect, and rehabilitate mangrove ecosystems. MSystems. 5(5):
https://doi.org/10.1128/mSystems.00658-20
Antizar-Ladislao, B., S.K. Sarkar, P. Anderson, T. Peshkur, B.D. Bhattacharya, M. Chatterjee, K.K. Satpathy. 2011. Baseline of butyltin contamination in sediments of Sundarban mangrove wetland and adjacent coastal regions, India. Ecotoxicology. 20:1975-1983.
https://doi.org/10.1007/s10646-011-0739-5
Ben, G., W. David, P. Mike, F. Mark, H. Tim, H. Dominic, T. Nigel, H. Peter, D. Uwe, P. Tim. 2017. Multivariate extreme value modelling of sea conditions around the coast of England. Maritime Engineering. 170(1):3-20.
https://doi.org/10.1680/jmaen.2016.16
Bradter, U., W.E. Kunin, J.D. Altringham, T.J. Thom, T.G. Benton. 2013. Identifying appropriate spatial scales of predictors in species distribution models with the random forest algorithm. Methods in Ecology and Evolution. 4(2):167-174.
https://doi.org/10.1111/j.2041-210x.2012.00253.x
Chakraborty, S., S. Sahoo, D. Majumdar, S. Saha, S. Roy. 2019. Future mangrove suitability assessment of Andaman to strengthen sustainable development. Journal of Cleaner Production. 234:597-614.
https://doi.org/10.1016/j.jclepro.2019.06.257
Chen, L., W. Wang, Y. Zhang, G. Lin. 2009. Recent progresses in mangrove conservation, restoration and research in China. Journal of Plant Ecology. 2(2):45-54.
https://doi.org/10.1093/jpe/rtp009
Duke, N.C., O. Meynecke, S. Dittmann, A.M. Ellison, K. Anger, U. Berger, S. Cannicci, K. Diele, K.C. Ewel, C.D. Field, N. Koedam, S.Y. Lee, C. Marchand, I. Nordhaus, F. Dahdouh-Guebas. 2007. A world without Mangroves? Science. 317:41-42.
https://doi.org/10.1126/science.317.5834.41b
Estoque, R.C., S.W. Myint, C. Wang, A. Ishtiaque, T.T. Aung, L. Emerton, M. Ooba, Y. Hijioka, M.S. Mon, Z. Wang, C. Fan. 2018. Assessing environmental impacts and change in Myanmar's mangrove ecosystem service value due to deforestation (2000–2014). Global Change Biology. 24(11):5391-5410.
https://doi.org/10.1111/gcb.14409
Evans, J.S., M.A. Murphy, Z.A. Holden, S.A. Cushman. 2011. Modeling species distribution and change using random forest. Predictive Species and Habitat Modeling in Landscape Ecology. 139-159.
https://doi.org/10.1007/978-1-4419-7390-0_8
Ficetola, G.F., A. Bonardi, C.A. Mücher, N.L.M. Gilissen, E. Padoa-Schioppa. 2014. How many predictors in species distribution models at the landscape scale? Land use versus LiDAR-derived canopy height. International Journal of Geographical Information Science. 28:1723-1739.
https://doi.org/10.1080/13658816.2014.891222
Giri, C., E. Ochieng, L.L. Tieszen, Z. Zhu, A. Singh, T. Loveland, J. Masek, N. Duke. 2011. Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography. 20:154-159.
https://doi.org/10.1111/j.1466-8238.2010.00584.x
Gonzalez-Acosta, B., Y. Bashan, N.Y. Hernandez-Saavedra, F. Ascencio, G. de la Cruz-Agüero. 2006. Seasonal seawater temperature as the major determinant for populations of culturable bacteria in the sediments of an intact mangrove in an arid region. FEMS Microbiology Ecology. 55:311-321.
https://doi.org/10.1111/j.1574-6941.2005.00019.x
Guisan, A., R. Tingley, J.B. Baumgartner, I. Naujokaitis-Lewis, P.R. Sutcliffe, A.I. Tulloch, T.J. Regan, L. Brotons, E. McDonald-Madden, C. Mantyka-Pringle, T.G. Martin, J.R. Rhodes, R. Maggini, S.A. Setterfield, J. Elith, M.W. Schwartz, B.A. Wintle, O. Broennimann, M. Austin, S. Ferrier, M.R. Kearney, H.P. Possingham, Y.M. Buckley. 2013. Predicting species distributions for conservation decisions. Ecology Letters. 16:1424-1435.
https://doi.org/10.1111/ele.12189
Hong, P., Y. Wen, Y. Xiong, L. Diao, X. Gu, H. Feng, C. Yang, L. Chen. 2021. Latitudinal gradients and climatic controls on reproduction and dispersal of the non-native mangrove Sonneratia apetala in China. Estuarine, Coastal and Shelf Science. 248:106749.
https://doi.org/10.1016/j.ecss.2020.106749
Hu, W., Y. Wang, D. Zhang, W. Yu, G. Chen, T. Xie, Z. Liu, Z. Ma, J. Du, B. Chao, G. Lei, B. Chen. 2020. Mapping the potential of mangrove forest restoration based on species distribution models: A case study in China. Science of Total Environment. 748:142321.
https://doi.org/10.1016/j.scitotenv.2020.142321
Institute, P. 2020. Research report on mangrove protection and restoration strategy in China
Jia, M., Z. Wang, L. Li, K. Song, C. Ren, B. Liu, D. Mao. 2014. Mapping China’s mangroves based on an object-oriented classification of Landsat imagery. Wetlands. 34:277-283.
https://doi.org/10.1007/s13157-013-0449-2
Jia, M., Z. Wang, C. Wang, D. Mao, Y. Zhang. 2019. A new vegetation index to detect periodically submerged mangrove forest using single-tide sentinel-2 imagery. Remote Sensing. 11(17):2043.
https://doi.org/10.3390/rs11172043
Jia, M., Z. Wang, Y. Zhang, D. Mao, C. Wang. 2018. Monitoring loss and recovery of mangrove forests during 42 years: The achievements of mangrove conservation in China. International Journal of Applied Earth Observation and Geoinformation. 73:535-545.
https://doi.org/10.1016/j.jag.2018.07.025
Joyce, J., N.B. Chang, R. Harji, T. Ruppert, P. Singhofen. 2018. Cascade impact of hurricane movement, storm tidal surge, sea level rise and precipitation variability on flood assessment in a coastal urban watershed. Climate Dynamics. 51:383-409.
https://doi.org/10.1007/s00382-017-3930-4
Kathiresan, K. 2012. Importance of mangrove ecosystem. International Journal of Marine Science. 2(10):70-89.
Lopatin, J., K. Dolos, H.J. Hernández, M. Galleguillos, F.E. Fassnacht. 2016. Comparing generalized linear models and random forest to model vascular plant species richness using LiDAR data in a natural forest in central chile. Remote Sensing of Environment. 173:200-210.
https://doi.org/10.1016/j.rse.2015.11.029
Luan, J., C. Zhang, B. Xu, Y. Xue, Y. Ren. 2020. The predictive performances of random forest models with limited sample size and different species traits. Fisheries Research. 227:105534.
https://doi.org/10.1016/j.fishres.2020.105534
Mazumder, R., T. Hastie, R. Tibshirani. 2010 Spectral regularization algorithms for learning large incomplete matrices. Journal of Machine Learning Research 1(11):2287-2322.
http://www.ncbi.nlm.nih.gov/pubmed/21552465
.
Naidoo, L., M.A. Cho, R. Mathieu, G. Asner. 2012. Classification of savanna tree species, in the Greater Kruger National Park region, by integrating hyperspectral and LiDAR data in a Random Forest data mining environment. ISPRS Journal of Photogrammetry and Remote Sensing. 69:167-179.
https://doi.org/10.1016/j.isprsjprs.2012.03.005
Olden, J.D., J.J. Lawler, N.L. Poff. 2008. Machine learning methods without tears: A primer for ecologists. The Quarterly Review of Biology. 83:171-193.
https://doi.org/10.1086/587826
Peterson, A.T. 2006. Uses and requirements of ecological niche models and related distributional models. Biodiversity Informatics. 3:59-72.
https://doi.org/10.17161/bi.v3i0.29
Pfadenhauer, J., A. Grootjans. 1999. Wetland restoration in Central Europe: Aims and methods. Applied Vegetation Science. 2:95-106.
https://doi.org/10.2307/1478886
Quisthoudt, K., N. Schmitz, C.F. Randin, F. Dahdouh-Guebas, E.M.R. Robert, N. Koedam. 2012. Temperature variation among mangrove latitudinal range limits worldwide. Trees. 26:1919-1931.
https://doi.org/10.1007/s00468-012-0760-1
Ray, D., M.D. Behera, J. Jacob. 2018. Evaluating ecological niche models: A comparison between maxent and GARP for predicting distribution of hevea brasiliensis in India. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences. 88:1337-1343.
https://doi.org/10.1007/s40011-017-0869-5
Ren, H., X. Wu, T. Ning, G. Huang, J. Wang, S. Jian, H. Lu. 2011. Wetland changes and mangrove restoration planning in Shenzhen Bay, Southern China. Landscape and Ecological Engineering. 7:241-250.
https://doi.org/10.1007/s11355-010-0126-z
Romañach, S.S., D.L. DeAngelis, H.L. Koh, Y. Li, S.Y. Teh, R.S. Raja Barizan, L. Zhai. 2018. Conservation and restoration of mangroves: Global status, perspectives, and prognosis. Ocean and Coastal Management. 154:72-82.
https://doi.org/10.1016/j.ocecoaman.2018.01.009
Sabatini, F.M., W.S. Keeton, M. Lindner, M. Svoboda, P.J. Verkerk, J. Bauhus, H. Bruelheide, S. Burrascano, N. Debaive, I. Duarte, M. Garbarino, Nrigoriadis, F. Lombardi, M. Mikoláš, P. Meyer, R. Motta, G. Mozgeris, L. Nunes, P. Ódor, M. Panayotov, A. Ruete, B. Simovski, J. Stillhard, J. Svensson, J. Szwagrzyk, O. Tikkanen, K. Vandekerkhove, R. Volosyanchuk, T. Vrska, T. Zlatanov, T. Kuemmerle. 2020. Protection gaps and restoration opportunities for primary forests in Europe. Diversity and Distributions. 26:1646-1662.
https://doi.org/10.1111/ddi.13158
Sobek-Swant, S., D.A. Kluza, K. Cuddington, D.B. Lyons. 2012. Potential distribution of emerald ash borer: What can we learn from ecological niche models using Maxent and GARP? Forest Ecology and Management. 281:23-31.
https://doi.org/10.1016/j.foreco.2012.06.017
Stockman, A.K., D.A. Beamer, J.E. Bond. 2006. An evaluation of a GARP model as an approach to predicting the spatial distribution of non-vagile invertebrate species. Diversity and Distributions. 12:81-89.
https://doi.org/10.1111/j.1366-9516.2006.00225.x
Tahira, N., B. Nazima, M. Roomina, I. Noshin. 2015. Effects of siltation, temperature and salinity on mangrove. European Academic Research. 11:14172-14179.
Vessella, F., B. Schirone. 2013. Predicting potential distribution of Quercus suber in Italy based on ecological niche models: Conservation insights and reforestation involvements. Forest Ecology and Management. 304:150-161.
https://doi.org/10.1016/j.foreco.2013.05.006
Wang, H.T., J.Q. Su, T.L. Zheng, X.R. Yang. 2014. Impacts of vegetation, tidal process, and depth on the activities, abundances, and community compositions of denitrifiers in mangrove sediment. Applied Microbiology and Biotechnology. 98:9375-9387.
https://doi.org/10.1007/s00253-014-6017-8
Zellmer, A.J., J.T. Claisse, C.M. Williams, S. Schwab, D.J. Pondella. 2019. Predicting optimal sites for ecosystem restoration using stacked-species distribution modeling. Frontiers in Marine Science. 6:3.
https://doi.org/10.3389/fmars.2019.00003
Zhang, M., S. Liang, A. Suo, Z. Sun. 2017. Progress of coastal environment repairing and cleaning engineering research and its prospect. Journal of Marine Environmental Science. 36:635-640.
https://doi.org/10.13634/j.cnki.mes.2017.04.024